Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series.
نویسندگان
چکیده
AIM OF THE STUDY Intrathoracic pressure regulation (IPR) is a novel, noninvasive therapy intended to increase cardiac output and blood pressure in hypotensive states by generating a negative end expiratory pressure of -12 cm H2O between positive pressure ventilations. In this first feasibility case-series, we tested the hypothesis that IPR improves End tidal (ET) CO2 during cardiopulmonary resuscitation (CPR). ETCO2 was used as a surrogate measure for circulation. METHODS All patients were treated initially with manual CPR and an impedance threshold device (ITD). When IPR-trained medics arrived on scene the ITD was removed and an IPR device (CirQLATOR™) was attached to the patient's advanced airway (intervention group). The IPR device lowered airway pressures to -9 mmHg after each positive pressure ventilation for the duration of the expiratory phase. ETCO2, was measured using a capnometer incorporated into the defibrillator system (LifePak™). Values are expressed as mean ± SEM. Results were compared using paired and unpaired Student's t test. p values of <0.05 were considered statistically significant. RESULTS ETCO2 values in 11 patients in the case series were compared pre and during IPR therapy and also compared to 74 patients in the control group not treated with the new IPR device. ETCO2 values increased from an average of 21 ± 1 mmHg immediately before IPR application to an average value of 32 ± 5 mmHg and to a maximum value of 45 ± 5mmHg during IPR treatment (p<0.001). In the control group ETCO2 values did not change significantly. Return of spontaneous circulation (ROSC) rates were 46% (34/74) with standard CPR and ITD versus 73% (8/11) with standard CPR and the IPR device (p<0.001). CONCLUSIONS ETCO2 levels and ROSC rates were significantly higher in the study intervention group. These findings demonstrate that during CPR circulation may be significantly augmented by generation of a negative end expiratory pressure between each breath.
منابع مشابه
Transmission of intrathoracic pressure to the intracranial space during cardiopulmonary resuscitation in dogs.
Elevation of intrathoracic pressure during cardiopulmonary resuscitation generates carotid pressure and flow, but also increases intracranial pressure. This increase in intracranial pressure may limit cerebral blood flow. Therefore, we performed studies designed to quantify the extent of this transmission and to identify the mechanism of transmission of intrathoracic pressure to the intracrania...
متن کاملMechanisms of Blood Flow During Cardiopulmonary Resuscitation
Despite the widespread clinical appliciktion of cardiopulmonary resuscitation (CPR), the mechanism responsible for blood flow during this maneuver remains undefined, although it has been assumed that blood is squeezed from the heart by direct compression of the sternum. We studied the hemodynamics of CPR in 15 arrested dogs. During chest compression, pressures in the left ventricle, aorta, righ...
متن کاملMechanisms of blood flow during cardiopulmonary resuscitation.
Despite the widespread clinical appliciktion of cardiopulmonary resuscitation (CPR), the mechanism responsible for blood flow during this maneuver remains undefined, although it has been assumed that blood is squeezed from the heart by direct compression of the sternum. We studied the hemodynamics of CPR in 15 arrested dogs. During chest compression, pressures in the left ventricle, aorta, righ...
متن کاملPhysiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardiographic study.
BACKGROUND There are two competing theories of the mechanism of blood flow during cardiopulmonary resuscitation. The "cardiac pump" theory postulates that blood flows because the heart is squeezed between the sternum and the spine. The "thoracic pump" theory postulates that blood flows from the thorax because intrathoracic pressure exceeds extrathoracic vascular pressure and that flow is restri...
متن کاملEffect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study
BACKGROUND The objective of this investigation was to evaluate changes in intrathoracic pressure (Ppl), airway pressure (Paw) and vital organ perfusion pressures during standard and intrathoracic pressure regulation (IPR)-assisted cardiopulmonary resuscitation (CPR). METHODS Multiple CPR interventions were assessed, including newer ones based upon IPR, a therapy that enhances negative intrath...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Resuscitation
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2013